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Abstrac:t-The objective of this work is to examine the large strain localization properties of
hyperelasto-plastic materials which are based on the multiplicative decomposition of the deformation
gradient. Thereby, the case of strong discontinuities is investigated. To this end, first an explicit
expression for the spatial tangent operator is given, taking into account anisotropic as well as
nonassociatedmaterial behaviour. Then the structure ofa regularized discontinuous velocity gradient
is elaborated and discussed in detail. Based on these two results, the loca1ization condition is derived
with special emphasis on the loading conditions inside and outside an anticipated localization band.
Thereby, the intriguingly simple structure of the tangent operator, which resembles the structure of
the geometrically linear theory, is extensively exploited. This similarity carries over to the general
representation for the critical hardening modulus which is exemplified for isotropic materials. As a
result, analytical solutions are available under the assumption of small elastic strains, which is
justified for metals. Finally, examples are given for the special case of the associated von Mises flow
rule. To this end, the critical localization direction and the critical hardening modulus are inves
tigated with respect to the amount of finite elastic strain within different modes of homogeneous
elasto-plastic deformations. © 1997, Elsevier Science Ltd. All rights reserved.

NOTATION

Material tensors defined in IMo:
C=Ft'F
L=F-l'I'F=F-I'F
N
1:2 = 1:1 ' F- t = F- l 'or'F- t

T = Ft '1:\ = Ft'-r"F- t

Spatial tensors defined on 1M :
b=F'Ft

1= F' L' F- 1 = F' F- 1

n
t = J-Ior"n
t, = 1:\'N
or = F'1:1 = F'1:2 'F'

Two point tensors defined on IMo and 1M :
F
1:, = 1:2 'F' = F-I·or

right Cauchy-Green deformation
Lagrange velocity gradient
material normal to surface dA at X
2. Piola-Kirchhoff stress
Mandel stress

left Cauchy-Green deformation
Euler velocity gradient
spatial normal to surface da at x
true traction
nominal traction
Kirchhoff stress

deformation gradient with det F = J
I. Piola-Kirchhoff or nominal stress

Objects with a superposed bar (I) are 'material' tensors defined on the intermediate configuration ill. Please
observe that we will denote by ~ the normal to yield condition or4ll on ill and not a normal to a surface.

Our notation employs the following dyadic products of second order tensors a and b when expressed in index
notation referred to a Cartesian co-ordinate system
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970 P. Steinmann et al.

[a ® bLkJ = [a]ulbh, with [a ® b] :c = a[c: b] and c:[a®b] = [a:c]b

[a ® bltjkJ = [a]ik[b]j/ with [a®b]:c = a·c·b' and c: [a@b] = a"c'b

[a ® bltjkJ = [a]iI[bLk with [a ® b] :c = a· c' . b' and c: [a~b] = b'·c'·a.

1. INTRODUCTION

A failure phenomenon, which is frequently observed in laboratory experiments as well as
in nature, is the localization of inelastic deformations within narrow bands. To investigate
such localization, which forms a precursor to fracture, is a challenging problem from the
viewpoints of constitutive modelling as well as of the choice of computational strategy.

The classical approach is to consider a band that is trapped between two material
surfaces, across which the material or the spatial velocity gradient is discontinuous (weak
discontinuity), Rice (1976), Thomas (1961), Rudnicki and Rice (1975). Analogous argu
ments in the context of planar acceleration waves in solids are found in the early work of
Hadamard (1903) and in the contributions by Hill (1962) and Mandel (1962, 1966).
Moreover, the traditional analysis relies on the assumption of a linear comparison solid in
the sense of Hill (1958). Discontinuous bifurcation is then reflected by a singularity of the
spatial localization tensor. As an example, we refer to the small strain analysis of an
orthotropic yield condition by Steinmann et al. (1994). Within the context of quasi-static
boundary value problems, the first occurrence of the singularity of the localization tensor
is referred to as the loss of ellipticity, which is synonymous with the appearance of real
characteristics associated with governing equations of the hyperbolic type. Likewise, within
the context of dynamic initial boundary value problems, the singularity of the localization
tensor is connected with the loss ofhyperbolicity.

The alternative, and kinematically more general, approach pursued in this paper is to
assume that the localization zone is the result of a regularized discontinuity in the nonlinear
deformation map, or displacement field, itself (strong discontinuity). Moreover, since no
linear comparison solid is assumed in this approach, different loading and unloading
scenarios are analysed with respect to localization. This results in a much broader interpret
ation of the spectral properties of the localization tensor. So far in the literature, the
conditions for localization within this framework have been established merely for the small
strain approximation, e.g., Ottosen and Runesson (1991), and localization capturing FE
strategies have been proposed by Larsson et al. (1993), Simo et al. (1993) and Larsson and
Runesson (1996), Larsson et al. (1996). It is emphasized that, as long as the necessary
conditions for the onset of localization are concerned, the difference between the two
approaches is quite subtle in practice, whereas the impact on the computational algorithm
may be significant. Therefore, the results of this work are useful for future numerical
developments.

For the constitutive framework, we elaborate in this paper on the concept of a reg
ularized displacement discontinuity within the context of multiplicative hyperelasto-plastic
continua at large strains. Although the concept of a multiplicative decomposition of the
deformation gradient goes back to early works by Kroner (1960), Lee (1969), Teodosiu
and Sidoroff (1976) and Mandel (1972) it is not until the contributions by, e.g., Simo and
Ortiz (1985), Simo (1988), that it has won widespread acceptance over the more traditional
additive type hypoelasto-plastic models. The formulation and numerical treatment ofmulti
plicative hyperelasto-plasticity has progressed extensively in the recent works of Moran et
al. (1990), Cuitifio and Ortiz (1992), Simo (1992), Simo and Miehe (1992), Miehe and Stein
(1992), Miehe (1994). One significant advantage is that the formulation is based on the
sound thermodynamic principle of nonnegative energy dissipation. Micromechanically, the
multiplicative decomposition is strongly motivated by the kinematics of single crystals
where the deformation is decomposed into dislocation movement along fixed slip systems
followed by an elastic distorsion of the crystal lattice. Nevertheless, the multiplicative
decomposition is presently widely accepted as a general concept for large strain hyperelasto
plasticity of a broad class of materials.
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The paper is organised as follows: first, a summary is given of the major steps towards
the establishment of the so-called first Euler hyperelasto-plastic tangent operator, which is
used in the spatial setting for the constitutive relations. In passing, we note some new
observations concerning the structure of this tensor. Next, we introduce the concept of a
regularized strong discontinuity across a material surface attached to the body, i.e., con
vecting with the deformation. Then we discuss the general localization condition in terms
of traction continuity, which is followed by an investigation of how elastic unloading vs
plastic loading will affect the localization assessment. For the sake of demonstration, we
estabJish explicit equations for the example of compressible NecrHooke hyperelasticity
coupled to arbitrary isotropic yield conditions, from which the critical hardening modulus
and the corresponding critical localization directions can be computed. In particular, we
show the remarkable result in the case of small elastic strains, which may be superimposed
onfinite plastic deformations, that the analytical results obtained by Ottosen and Runesson
(1991) are directly applicable. Finally, the analysis of typical large strain examples of
uniaxial tension, pure and simple shear illustrate the theory.

2. BASIC STRESS RATES AND TANGENT OPERATORS

To set the stage for the subsequent developments, we briefly review some essential
relations ofgeometrically nonlinear continuum descriptions. As usual, the nonlinear defor
mation map x = qI(X) :~o --+ 1R3 maps particle positions X in the reference configuration
~o to their actual position x in the deformed configuration ~. Then F = Vxql with
J = det F > 0, denotes the deformation gradient defining a linear map of elements in the
tangent space T~o into elements of the tangent space TfJl. The pertinent strain and stress
measures, that will be used subsequently, are summarized in the notations for brevity and
clarity. Here, we will mainly discuss some useful stress rates and the corresponding tangent
stiffness operators. Associated with the transformations between the reference and the
spatial configurations fJloand fJl, i.e., from the pull-back operations applied to the Kirchhoff
stress outlined in the notations, we define the nonsymmetric nominal stress rate %, the
classical symmetric Oldroyd stress rate ~ and the nonsymmetric convective stress rates ¥in
the relations

(I)

Thereby, using if = I' F and if-I = - F- I '1, the spatial stress rates expand into

Equivalently, by considering the relation between the traction vectors t l dA = tda together
with the Nanson formula we obtain the rate format il dA = tda with i[ = t'l .Nand
Jt = %" D. The introduced spatial stress rates are summarized in Table 1.

Next, we introduce the general structure of some useful fourth order tangent stiffness
operators for incrementally linear material behaviour. We will not consider incrementally
nonlinear materials such as the class of hypoplastic materials where the stress rates depen4
nonlinearly on the velocity gradients. The tangent stiffness operators associated with the
nominal stress are the fourth order first Lagrange and Euler tangent operators.fiJ[ and 8 1l

respectively, which are defined through the relations

Table I. Spatial rates of Kirchhoff stress

~'= 8 2 :landl:82 = ~'with~' = t'-,\,'I'-I',\,

%, = 8\: landl: 8\ = %'with %' = t' _'\"1'

t' = 8 0 : landl: 8 v = t'with t' = t'

~'= 8 v:landl:8o = ~'with~' = t'-,\,'l'+l",\,
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Table 2. Euler tangent operators

8 2 8 1 8 0 8 v

8 2 8 2 8,-I@-r 8 0-I@-r--r@I 8 v-I@-r-I@-r

8, 8 2 +I@-r 8, 80--r~I 8v-I~-r

8 0 8 2 +I@-r+-r@I 8,+-r~I 8 0 8v+-r~I-I@-r

8 v 8 2 +I@-r+I@-r 8,+I@-r 8 0--r@I+I@-r 8 v

t~ = !l'1 :F and ~t = "1:1 with "1 = [I ® F] : !l' ( : [I ® F']. (3)

Accordingly, the spatial tangent operators "2' 8 0 and 8 v are introduced as the definitions

(4)

with the relation for example to 8( easily derived from eqn 2

In order to summarize and interrelate the introduced spatial tangent stiffness operators we
refer to Table 2.

Remark
From eqn 5 and the properties of the dyadic product ~, which are pointed out in the

notations, we conclude that, for arbitrary second order tensors a, the following identities
hold

"v :a = a: 8 0 and a: "v = 8 0 : a.

Therefore, the operators"v and 8 0 do not possess the property of a major symmetry, which
would manifest itself in invariance under the left or right action of a tensor a. This is in
contrast to the operators 8 2 and 8 1 as alluded to in Table 1. In the following section, this
fundamental observation will play an essential role in the interpretation of the symmetry
properties of the hyperelasto-plastic tangent operator. 0

Remark
For a Cartesian co-ordinate system, the notation used in eqn 3 expands into

o

Remark
The introduced tangent operators and transformations are general for incrementally

linear material behaviour. Hence, they are in particular valid for hypoelasticity, hyper
elasticity, hypoelasto-plasticity (based on the additive decomposition of the spatial rate of
deformation Isym) as well as for hyperelasto-plasticity (based on the multiplicative decompo
sition of F). In the sequel of this work, we will restrict our considerations to the ther
modynamically sound hyperelasto-plastic constitutive framework. 0

3. HYPERELASTO-PLASTIC TANGENT OPERATOR

Within the context of hyperelasto-plasticity, the point of departure is the multiplicative
decomposition and the deformation gradient into an elastic and a plastic part
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(6)

For hyperelasticity, the free energy density '¥ per unit volume ofthe reference configuration
(JIo acts as a potential for the stress response. To this end, '¥ is expressed in terms of Fe and
a set of strainlike internal variables, that control the hardening (or softening). For our
purpose, it is sufficient to choose only one scalar internal variable K, which represents
isotropic hardening.

Taking into account the requirements of objectivity under rigid body motions super
posed onto the current configuration, we thus assume that

(7)

where SO(3) is the group of proper orthogonal transformations.
The Clausius-Duhem inequality may be expressed in terms of the first Piola-Kirchhoff

stress t~ = 't' 0 F;' and Fe, defined on the plastic intermediate configuration 11, as

't' : 1- 'P = t~ :[10 Fe] - 'P > o. (8)

Upon introducing the decomposition of the Euler velocity gradient I into an elastic and a
plastic part

(9)

into eqn 8, and taking into account eqn 7, we obtain the hyperelastic part ofthe constitutive
law and the remaining dissipation inequality as

(10)

The stress f on 91, originally introduced by Mandel (1972) and subsequently employed by
e.g., Lubliner (1986) and Miehe (1994), and the drag stress K, which is the dissipative stress
that is thermodynamically conjugated to K, are given as

(11)

For non-associated plasticity the structure of the dissipation inequality suggests a yield
condition <I> and a flow rule in terms of the stress measure f

<I> = ci>(f, K) with arci> = Nand Lp = XM ass.
N-+ (12)

Equivalently, the evolution equation for the hardening variable K is given in terms of the
drag stress

<I> = ci>(f, K) with aKci> = Nand ,,= A.M a~." = A.JV. (13)

Hence, the special case of associated plasticity is obtained upon substituting M, AI by N,
N, whereby the principle of maximum dissipation will be satisfied, see Mandel (1972)
Lubliner (1984, 1986), Miehe and Stein (1992) and Miehe (1994).

Remark
Plastic-loading and elastic-unloading conditions together with the requirement of con

sistency are expressed as
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<b(f,K) ~ 0 A~ 0 A<b(t,K) = 0 and Adl(f,K) = o. (14)

For associated plasticity the loading-unloading conditions follow from the optimality
conditions that are implied by the principle of maximum dissipation. In terms of an
optimization problem with inequality constraints they represent the classical Kuhn-Tucker
complementary conditions. For non-associated plasticity the loading-unloading conditions
are postulated by merely considering physics. 0

Interludium
It proves convenient to introduce the hyperelastic operators 8~, 8~1, 8'l1 and 8~ on fA.

To demonstrate the similarity in structure of the hyperelastic operators with those shown
in Table 2, we give below the basic steps leading to these relations. From the transformations
between the intermediate and the spatial configuration ffI and~, i.e., from elastic pull-back
operations applied to the Kirchhoff stress, we define the elastic nominal rate f' together
with f' and f in the relations

and 1:' = F- 1 of' °F-' and t = F' oft °F- t
2 e e e eo (15)

Thereby, using Fe = Ie °Fe and F; I = - F; 1 01., the elastic stress rates expand into

o 0 ~

f' = t' - 't' °1' and f' = t' - 't' °1' -I °'t' and f' = t ' - 't' °1' +I' °'t'e e e e e •

The hyperelastic tangent operators !£~l and 8~1 are then defined as

with the relations for the hyperelastic fourth order tangent operators

(16)

(17)

(18)

Analogously to 8 0 and 8 v in eqns 4 and 5, we introduce the hyperelastic counterparts via
the relations

In conclusion, it appears that the generic Euler tangent operators in Table 2 are valid for
hyperelastic behaviour if merely Fe is substituted for F. 0

We are now in the position to use the consistency condition in eqn 144 in standard
fashion

(20)

where we introduced fl from eqn 153 and l' is the spatial equivalent, i.e., the mixed variant
push-forward, of N. Upon introducing the spatial format of the flow rule Ip = All together
with the hardening modulus H and considering the evolution equation k = AM in It = - Hk
and finally inserting these relations together with eqn 192 into eqn 20 we obtain

4>=l':8~:I-h)' with h=NHM+l':8~:1l and Il=FeoMoF;I. (21)

In the case of plastic loading, we thus obtain from eqn 21, equivalently to the small strain
case, that dl = 0 renders the plastic multiplier). the value
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(22)

In order to establish the spatial form of the hyperelasto-plastic tangent stiffness operator,
we firstly consider the relation between the nominal and the elastic nominal rate of the
Kirchhoff stress -r' and fl from eqn 16] and secondly incorporate eqn 172into the resulting
expression. Consequently, the nominal stress rate in 91 follows as

(23)

As a result we obtain the first Euler hyperelasto-plastic tangent operator in a remarkably
simple format

(24)

Remark
The corresponding second Euler tangent operator is symmetric for the case ofassociated

flow rules, i.e., Jl = 11 and Ai = N, since 11 : ,g~ = ,gg : 11. In fact, for H = 0 our result coincides
with the tangent operator for ideal multiplicative hyperelasto-plasticity which was first
derived, by a somewhat different line of argumentation, in Miehe (1994). Moreover, by
considering the relation

we conclude that the first Euler tangent operator may be expressed for the case ofassociated
flow rules in combination with an isotropic free energy function 'I' and an isotropic yield
condition <I> as

In this case 11 and l' commute and we find that 1I:,g~ = 11: ,gg. o

4. REGULARIZED DISCONTINUITY ACROSS MATERIAL SURFACE

As a preliminary to the subsequent discussion, consider the monotonic function
S(X): 1R3 -+ IR defined on the reference configuration 910, The material surface r o attached
to 910 with unit normal N, as shown in Fig. 1, is then defined as

f o

r

N

fiJ
Fig. 1. Regularized discontinuity across material surface.
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(25)

The surface subdivides 810 into 810 and &It with the unit normal N pointing from &10 to
P.4t .During the deformation x = fP(X, t) the surface r 0 and the unit normal N are convected
to the surface r and the unit normal D in the spatial configuration fA via the relations

Since the surface r 0 is assumed to be attached to fAo, its material time derivative is
S = 0, and the convective velocity c of the spatial surface r is given by c = r I orS = - D • v
with v = ip.

Let us, next, introduce a discontinuous displacement field u(X, t) that is spatially
smooth except across roo We may then express this field as

u(X, t) = uc(X, t) +Hs(X) [u(t)], (27)

with Uc the spatially continuous part. Moreover, H s is the Heaviside function centered on
r 0, and [u] is the jump of u across r o. This jump is assumed to be preserved along r 0 in the
sense that [u] = const along ro. Thereby, the jump [u] is defined as

[u(t)] = lim [u(Xo+eN, t)-u(Xo-eN, t)] where XoEro..-0
The Heaviside function Hs on r o is defined via the function H (e) as

(28)

1

0 iff XE&lo
Hs(X)=H(S(X»= 1 iff XEro

1 iff XE&lt

{
o 'V(e) < 0

with H(e) = 1
'V(e) ~ 0

(29)

To simplify notation we shall in the sequel omit the arguments of all field quantities if there
is no risk of confusion. It is noted that the deformation map fP is not unique along the
discontinuity surface r 0, since

fP = X+uc+Hs[u] ::;:: fPc + Hs[u] with fPc::;:: X+u., (30)

where fPc denotes the continuous part of the total deformation map fP. The corresponding
discontinuous velocity field is

(31)

In order to obtain the deformation gradient corresponding to q> in eqn 30, the scalar-valued
Dirac-delta distribution f>s on r o is defined via the function f>(e) as

1

0 iff X E 810

f>s = f>(S(X» = OC! iff XEro

o iff XE&lt
{

OC! 'V(e)::;:: 0
with f>(e) = 0

'V(e) #- O·
(32)

Moreover, the vector-valued Dirac-delta distribution Ds and the Heaviside function Hs on
r o are related in a distributional sense by
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r (e)o,ssdV= r (e)oVxHsdV= f. (e)oNdA V(e) E[CO"(.sfoWdim(el. (33)
J.~o Jillo r 0

The last relation follows from integration by parts while taking into account the definition
of Hs and CO"(.sfo). Therefore, the relation between {,S and Hs on r o may be stated as the
functional identity

(34)

Since [u] is spatially constant along r o, we may express the material deformation gradient
and its velocity, which are singular along the discontinuity surface, as

(35)

Here, Fe = VxfPe and Fe = VxlPedenote the continuous contributions to F and F, respectively.
For a regularization of the singularity terms, we assume that two parallel surfaces

rj) and rt with the same unit normal N surround a narrow band-shaped domain .sf~ of
width {,O, see Fig. 1. Thereby, {,O is much smaller than a typical geometrical length scale of
the domain .sfo. Hence, we define

(36)

We may now proposed the regularized Heaviside function H R and Dirac-delta distribution
{,R as

10

iff XE.sfj)

I e 0.+:, iff XE.sf~H. ~ 2~ 0, iff XE.sf~ and (37)

iff X¢.sf~
iff XE.sft

Moreover, the regularized vector-valued Dirac-delta distribution OR is defined as

(38)

Thereby, the regularized vector valued Dirac-delta distribution satisfies the following
relation

This result holds also for a finite band width {,O if we assume that the quantity (e) does not
vary across the band.

The regularized CO-continuous deformation fP together with the regularized dis
placement and velocity fields are then expressed in terms of the regularized Heaviside
function H R as
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It follows immediately that the regularized versions of F and F can be expressed as in eqn
35 by simply replacing bs with bR

(41)

Subsequently, we consider the restriction to the band-shaped domain ~ to obtain the
regularized F, and F" which are discontinuous, as

(42)

As the spatial counterpart of F" we now consider the regularized spatial velocity gradient,
I, defined by

(43)

In order to obtain the structure of I, we first evaluate F; I by direct application of the
Sherman-Morrison formula, which expresses the inverse of a regular second order tensor
with rank-one update, as

F-1= F-1 _ [U] ® N' F;l with [U] = Fe-I. [u].
, e bo+N' [U] (44)

Here we introduced the contravariant pull-back [U] of the vector [u] with the continuous
portion of the regularized deformation gradient. Upon introducing the spatial thickness b
of the localization band via the relationjb = jobo, we may also introduce the spatial normal
to the band via the relation

(45)

We thus obtain the interesting representation for F; I in comparison to F, as

(46)

The regularized spatial velocity gradient I, can now be derived in a straightforward fashion
and we obtain the representation ofl, in comparison to the material counterpart F, as

(47)

It appears that the introduced rate [u] has the structure of a Lie derivative of [u] with
respect to the continuous part of the deformation gradient Fe, since we have

[U]=F;I·[U] N-+ [U]=F;I·[U] with [u]=[U]-V[u]. (48)

Remark
The classical localization analysis, see, e.g., Rice (1976), assumes continuity of the

deformation qJ and its associated deformation gradient F = VxfP. Then the velocity field
may be discontinuous across r owith singular material gradient. Accordingly, U, and F, take
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on the same structure as in eqns 40 and 42. However, due to the continuity of F it follows
that Ir will be simplified, as compared to eqn 47, in the following fashion

In the more general approach considered in this paper, onset of localization is defined by
[u] = 0, i.e., Fr = Fe = F, whereas [Ii] =J: o. This gives [u] = [Ii], and the classical approach
coincides with the general one at this particular moment.

In the sequel we shall employ the generic expressions for the regularized material and
spatial velocity gradients

with M = [Ii] and m = [u] or m = [Ii]. o

5. LOCALIZATION: GENERAL APPROACH

The key requirement for the possible development of a regularized strong discontinuity
is that the incremental equilibrium equation is spatially continuous across the band. This
implies that the traction vector is continuous across the band, which may be expressed in a
spatial format via the nominal traction rate as

(49)

Here, we introduced the notation x_ = lp(X-) EfJI- and x+ = lp(X+) EfJI+ such that

We also note that, in addition to equilibrium continuity, Fe and Ie coincide on both sides of
the band for (j being a small measure, i.e.,

Next, we use the definition of the nominal traction rate

(52)

and insert Ie and Ir to evaluate tb(xo) and t = t(x+) inside and outside the band
- -

(53)

Here, we introduced the spatial localization tensor q = q(Fr ) as the contraction of the first
Euler tangent operator with the surface unit normal n to obtain

(54)

with 8 1,2 = 8 1.iFr ) and'tn = O"'t"n. Thereby, the contractions are performed with respect
to the second and fourth index of the fourth order tensors 8 1,2' The localization tensor q
will take on the values qel or qep depending on whether elastic or plastic loading takes place
inside the band. Moreover, we defined the jump in the tangent stiffness
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(55)

since 8 1(F,) and 8 1(Fc) take, in general, different values in 31± and fJIO due to the difference
ofF, and Fe-

From the traction continuity in eqn 49 we are now in the position to establish the
localization condition, or rather the admissibility condition for maintaining a regularized
strong discontinuity, in the spatial setting as follows:

(56)

Remark
The localization tensor q is naturally decomposed into a material and a geometrical

contribution, which stems from the structure ofthe tangent operator 8 1, It is quite remark
able that the geometrical part is expressed solely in terms of the normal stress Tn = D' or' D

acting on the discontinuity surface. This fact has not been pointed out in the literature so
fur. D

6. LOCALIZATION: HYPERELASTICITY IN gr AND £r-

For hyperelasticity, the only situation of interest is that the displacements are con
tinuous across the boundaries of an anticipated band at the current state of deformation,
i.e., no band has developed so far. Then the hyperelastic tangent operator will take the
same value inside and outside the band

(57)

Upon introducing this result into in eqn 56, we obtain the condition for onset ofa regularized
displacement discontinuity in a purely hyperelastic material as follows

qel'm = 0 H-+ m"# 0 if detqel = 0 (58)

where qel is the hyperelastic localization tensor. It may be noted that the width (j of the
band does not come into play. Moreover, according to eqn 54, qel is symmetric since the
corresponding tangent operator 8 e

/ possesses major symmetries.

Remark
It is recalled that the Legendre-Hadamard condition, or the condition for strong

ellipticity, is

[at ® B] : .!l'~l : [at ® B] > 0 and [at ® fI] : 8~1: [at ® fI] > 0

for all vectors at, fI and B, such that

[at ® B] "# 0 and [at ® fI] "# 0 with B = fI' F.

This is a sufficient requirement for hyperelastic materials to assure uniqueness of solutions
to boundary value problems, see Ogden (1984). Clearly, by identifying the vectors at and fI
with the vectors m and D, the condition for strong ellipticity is recovered in terms of the
hyperelastic localization tensor as m 'qel' m > O. Therefore, the possibility of a bifurcation
into a band-shaped mode is excluded for hyperelastic materials as long as the strong
ellipticity requirement is satisfied. D
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7. LOCALIZATION: HYPERELASTO-PLASTICITY IN !JI" AND ~-

For hyperelasto-plasticity, the situation ofprimary interest is, again, that displacements
are continuous across the boundaries of an anticipated band at the current state of defor
mation, i.e., no band has developed so far. We first consider the case of plastic loading
inside and outside the band, whereby the hyperelasto-plastic tangent operator takes the
same value inside and outside the band

(59)

Upon introducing this result into eqn 56, we obtain the condition for onset of a regularized
displacement discontinuity in a hyperelasto-plastic material as follows:

qep "m = 0 N'+ m"# 0 if det qep = 0 (60)

where qep is the hyperelasto-plastic localization tensor. Again, the width [) of the band
does not come into play. Moreover, according to eqn 54, qep is symmetric as long as the
corresponding tangent operator tf~p possesses major symmetries.

Taking into account the structure of ~p in eqn 24, a general representation of the
corresponding qep is

The explicit expression for the critical hardening modulus, for which qep first becomes
singular, can be determined in a fashion that is quite similar to that of the geometrically
linear theory, see, e.g., Ottosen and Runesson (1991). To this end, we use the following
auxiliary result for the determinant of a second order tensor A, that is defined as the sum
of a regular second order tensor B and a rank-one update

A = B+Q(c ® d N'+ detA = detB[l +Q(d" B- 1
" c).

The proof follows by using the definition of the determinant of a second order tensor in
terms of its invariants and exploiting the Cayley-Hamilton theorem. Hence, we obtain

[
1 -1 ]detqep = detqel 1- he. "qel "ell

from which we derive the critical hardening modulus Hen rendering detqep = 0, as

We conclude that no localization can occur as long as H> Her.

(62)

(63)

Remark
It is interesting to interpret the preceding results in terms of the solution of the following

general right eigenvalue problem incorporating the hyperelastic localization tensor as a
metric

qep "Z = wqel "z.

The corresponding standard right eigenvalue problem is given by

(64)
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(65)

With the lemma given above the characteristic equation follows straightforward

with solution for the eigenvalues

(66)

(67)

It is easily verified that the corresponding right eigenmodes follow from

Observe the result for the determinant of the localization tensor det qep = (03 det qe!' D

8. LOCALIZATION: HYPERELASTO-PLASTICITY IN ~

Another possible loading situation within hyperelasto-plasticity is characterized by
plastic loading inside and elastic loading outside the anticipated band, while it is still assumed
that no band has developed so far. The tangent operator within the band will then get an
additional contribution due to the plastic loading condition in gr such that

Upon introducing this result into eqn 56 we obtain the condition for onset of a regularized
displacement discontinuity as follows:

(70)

Here, Ac denotes the negative 'plastic multiplier', which reflects the elastic unloading con
dition outside the band

(71)

With the inverse of the elastoplastic localization tensor qep given as

(72)

we may solve for m in terms of the eigensolution [(03, Z3] of qep
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(73)

Remark
For the present case, the localization condition contains the width b of the band.

Moreover, the magnitude y of the spatial jump m is driven by the continuous part Ic of the
spatial velocity gradient. 0

9. LOCALIZATION ANALYSIS FOR ISOTROPIC MODELS

In this section we elaborate on the expression in eqn 63 in order to establish more
explicit representations that can be used towards an analytical evaluation of critical direc
tions Ocr and the corresponding critical hardening modulus Her. For the sake of simplicity,
we make the significant restriction to isotropic hyperelasto-plastic materials. Then the flow
direction p, the normal to the yield surface 11, the elastic Finger tensor be and the Kirchhoff
stress 't are coaxial, i.e., they commute.

First, as a generic model of hyperelasticity, we choose the isotropic compressible Neo
Hooke material for which the free energy is formulated in terms of the first invariant
II = Fe: F., the Jacobi determinant Je = detFeand two material parameters G and L as

'P = ~ G[II - 3] + U(Je) with U(Je) = ~ L In2 Je- GIn Je. (74)

Then, the spatial Kirchhoff stress tensor and the second Euler hyperelastic tangent operator
follow as

't = G[be-I] + LlnJel and tI~ = LI (8) 1+2[G-LlnJe]J (75)

with J = 1/2[1 ®I+I~I] denoting the symmetric fourth order unit tensor. By noting that
o·J· 0 = 1/2[1+0 (8) 0] and with b~ = O' be '0 we then compute

0·t1~·0 = [G+L[l-lnJe]]o (8) 0+ [G-LlnJe]1 and Tn = Gb~-[G-LlnJe]'

(76)

Hence, we obtain the hyperelastic spatia110calization tensor qel from eqn 54 as

(77)

For later use we compute the inverse of qel in closed form by the Sherman-Morrison
formula as

1
qd"1 = -[I-om (8) 0] with IX

Gb~

G+L[l-lnJe]

G[b~ + 1] + L[I-1nJe]
(78)

Next we observe that, from the definitions of8~ and tI~ in Table 2 in terms of tS~, and due
to the assumption of isotropy, the following results hold:

(79)

Incorporating the expressions for tS~ and't in eqn 75 and introducing the notation III = p: I
and VI = 11: I for the first invariants of p and 11, we obtain the key representations for the
subsequent derivations
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(80)

together with the quadratic form

Moreover, we obtain the following expressions for the vectors ell and ey

(81)

(82)

We are now in the position to compute the critical hardening modulus H cr from the
optimization problem

NM L

2G
Hcr = max Y(n)-[v·bel :p- 2GV1fl].

IDI= I
(83)

To obtain this expression, we incorporated the inverse ofthe hyperelastic spatial localization
tensor in eqn 78 into the quadratic form ey • qd" 1•ell to render the nondimensional function

Then the critical direction ncr is given by the solution

Dcr = arg(max Y(D)).
IDI=1

(84)

(85)

It is remarkable that we retrieve the representation of the geometrically linear theory for
the assumption of small elastic strains, i.e., at the identity Fe = I N'+ be = I and b~ = 1.
Thereby, the amount of plastic straining does not appear explicitly in eqn 84 but is only
involved via the difference between the total and the elastic deformation gradient Fp =
Fe-I. F. On the other hand, in comparing the critical hardening modulus H cr from eqn 83
with the actual hardening modulus H(K), the amount of plastic strain will play an essential
role since it indirectly defines the hardening variable K. Due to the hyperelastic part of the
constitutive framework the elastic part be of the total elasto-plastic straining is directly
responsible for the stress state which in tum determines the directions v and p. Thus, either
the stress state or the elastic strains could be told to be responsible for the solution Dcr in
eqn 85. Thereby, the amount of the elastic part of the total elasto-plastic straining is
contained in the elastic Finger tensor which acts as a metric within the representation of
the function Y(n) in eqn 84. Analytical solutions with respect to the principal axes ofgeneral
stress states in the case of the geometrically linear theory were derived in Ottosen and
Runesson (1991), to whom we refer for a detailed discussion.

Remark
The pure hyperelastic localization tensor qel becomes singular with eigendirection D as

soon as
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G[b~+l]+L[l-lnJe]=O N+ Je=exp(~[min(b~)+l]+l).
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On the other hand, the convex domain of this widely used compressible extension is known
to be limited by

U" = 0 ...... Je = exp(~ + 1)~ exp(~ [min(b~)+ 1] + 1)'

Thus, the first possibility for the onset of localization in the case of a mere hyperelastic
response is encountered when the domain of applicability of this constitutive model is
already exceeded. 0

10. EXAMPLE: NEo-HOOKE/VON MISES MODEL

As an example we combine the isotropic compressible Neo-Hooke elastic model with
the isotropic von Mises yield condition with associated flow rules

(86)

In accordance with the rules of tensor analysis a covariant-contravariant representation of
the stress measure f results in a contravariant-covariant representation of the flow direction
N

v = It =! and N = M =.J1 with s = dev'r.
({J

(87)

With VI = JJ.I = 0 the nondimensional function yen), or rather yen), for the determination
of the critical hardening modulus Her is given by

1
ee = (jbe ·s. (88)

Parametrized in the principal axes E; of the elastic Finger tensor b.. the function Yen) is
now expressed for a plane case in terms of the spatial angle 0

[
nl ] [COSO]
nIl = sinO· (89)

The explicit solution for the extrema of YeO), as given by 08Y(0) = 0, i.e.,

(90)

is a fairly cumbersome expression. Although it can be readily obtained by a symbol
manipulating software, it is not displayed here.

In the following examples we investigate the possibility for the onset of localization
within a solid that is deforming homogeneously with elasto-plastic deformations according
to the isotropic von Mises model in eqn 86. As noted earlier, the effect of the elastic part
of the finite elasto-plastic straining, as contained in the elastic Finger tensor appearing
implicitly in eqn 90, makes the explicit analysis of the critical band orientation and the
corresponding critical hardening modulus cumbersome to carry out in practice. Hence, we
display the results from expression 90 for some simple stress states. To this end, we consider
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45 "T"""---------------,
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Fig. 2. Uniaxial extension: critical angle (Ja'

the critical band orientation Bcr defined with respect to the principal axes Ej of be at the very
onset of localization. In particular, we study how Ber depends on the actual stress state
associated to the elasto-plastic deformation. Clearly, the actual stress state is determined
by the elastic part be of the previous elasto-plastic straining. Therefore, it is not necessary
to know the amount of plastic straining for our purpose since it leaves the determination
of Ber and Her unaffected. The actual plastic deformation Fp is only needed to determine Fe
from the given total deformation gradient F and to evaluate the actual hardening modulus
H(K). Here we shall assume that we know the elastic part be of the elasto-plastic straining
and thus the actual stress state beforehand. Thereby, as discussed before, the stress is
connected by a one to one relation to be due to the hyperelastic part of the constitutive
model. For the elastic constants contained in IX as defined in eqn 78 we assume G = 80.19
GPa and L = 110.75 GPa. These values are typical for metals and have frequently been
employed in the literature on computational plasticity, see, e.g., Simo (1992).

Uniaxial tension
For the case of uniaxial tension, we assume that the elastic deformation gradient Fe

within an elasto-plastic deformation is given with respect to a fixed co-ordinate system Ej

as

(91)

Clearly, the principal axes Ej of be coincide with E j in this case. The critical angle Bcr at the
possible onset of localization is plotted against the amount Yut in Fig. 2. It is noted that the
inclination of a possible localization band starts from an orientation of 41 0

, as predicted
by the small strain solution in Ottosen and Runesson (1991), and rotates with increasing
deformation into an orientation that is perpendicular to the direction of extension, thus
simulating a splitting tension failure type mode.

The critical hardening modulus Hero as computed from eqn 83, is displayed in Fig. 3.
Remarkably, Her takes ona negative value for small elastic deformations. At finite elastic
strains even a rather large positive H ~ Her allows for the onset of localization, i.e., for the
academic case that the yield limit allows for the development of very high stress levels or
elastic strains, respectively, the onset of localization would be possible even if the material
hardens extremely.

Pure shear
For the case of pure shear. we assume that the elastic deformation gradient Fe within

an elasto-plastic deformation is given with respect to a fixed co-ordinate system E j as
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(92)

Also, in this case, the principal axes Ej of be coincide with E j • The critical angle Ocr at the
possible onset of localization is plotted against the amount Yps in Fig. 4. It is noted that the
inclination of a possible localization band starts from an orientation of 0°, as predicted by
the small strain solution in Ottosen and Runesson (1991), and rotates with increasing
deformation into an orientation that is parallel to the direction of the major elastic principal
strain. It appears that in this case, the orientation of the band at the possible onset of
localization is convected with the deformation.

The critical hardening modulus Her> as computed from eqn 83, is displayed in Fig. 5.
The small elastic strain solution in Ottosen and Runesson(l991) predicts Hcr = O. At finite
elastic strains even a tremendously large positive H :::;; Her allows for the onset oflocalization.
Thus, as in the previous example, the sensitivity with respect to the onset of localization is
increasing with elastic straining.

Simple shear
For the case of simple shear, we assume that the elastic deformation gradient Fe within

an elasto-plastic deformation is given with respect to a fixed co-ordinate system E j as



988 P. Steinmann et al.

ooסס7 ...-----------------,

Small elastic strain solution (0)

Pure shear
Fig. 5. Pure shear: critical hardening modulus He<'

90_---------------,

Small elastic strain solution (90)

80 +-................,.....,r-r-........T"'"T..........,.....,r-r-........T"'"T..........,.....,,....-i
20

Simple shear
Fig. 6. Simple shear: critical angle (Je<'

(93)

Expressed in Euler principal axes E;, the associated elastic Finger tensor be has the same
structure as for the case of pure shear in the previous example. The relation between yss and
Yps is given as Yss = yps-y;;l ~ O. Thus, for simple shear, the pure shear results in the
previous example have to be augmented by the rotation of the principal axes of be to give
a representation in the fixed co-ordinate axes E;. Expressed in Ys., this correction is given
by (} = arctan(2/yss)/2, see, e.g., Ogden (1984). For the onset of localization the critical
angle 0er+ ewith respect to E1 is plotted against the amount Yss in Fig. 6. The inclination of
a possible localization band starts from an orientation of 90°, as predicted by the small
strain solution in Ottosen and Runesson (1991), and rotates with increasing deformation
into an orientation of ~84°. Subsequently, the orientation of the band rotates back to very
large amounts of shear into an inclination that simulates a deck ofcards solution. Clearly,
the critical hardening modulus Her develops in accordance with Fig. 5.

Remark
For small elastic strains, i.e., at the identity Fe = I"... be = I and b~ = 1 we retrieve the

solution of the geometrically linear theory in Ottosen and Runesson (1991)
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The critical angle ()er with respect to the principal axes of the Kirchhoff stress and the critical
hardening modulus Her are then explicitly given by

In the case of uniaxial tension with v/oc2/3, Vl/OC -1/3 we obtain the classical result

G [2G+3L]
and Her = - 4 [G+L] = -51.72 GPa.

Equivalently, the case of pure shear with V/oc 1, Vl/OC -1 renders (}er = 45° and Her = O. 0

11. SUMMARY AND CONCLUSION

In this work we examined the large strain localization properties of hyperelasto-plastic
materials which are based on the multiplicative decomposition of the deformation gradient
for the case of strong discontinuities.

First, we derived an explicit expression for the spatial hyperelasto-plastic tangent
operator for general anisotropic and nonassociatedmaterial behaviour. Thereby, the simple
structure of the hyperelasto-plastic tangent operator, which is formally achieved by intro
ducing hyper-elastic tangent relations for the rate of the Kirchhoff stress, resembles the
structure of the geometrically linear theory.

Next, the regularized discontinuous spatial velocity gradient was derived and its inter
esting structure in terms of a rank one update was discussed in detail. With this prerequisite
at hand, traction continuity in the spatial setting leads to the localization condition, or
rather the admissibility condition for maintaining a regularized strong discontinuity. The
exploitation of the particular structure of the tangent operator admits the localization
condition in a format entirely similar to the geometrically linear analysis. In particular,
special emphasis was placed on the loading conditions inside and outside an anticipated
localization band. Thereby, the scenarios of elastic-elastic unloading and plastic-plastic
loading render the classical localization condition in terms of a singular hypereiastic or
hyperelasto-plastic localization tensor, respectively. The alternative assumption of plastic
loading inside and elastic unloading outside the band requires a negative eigenvalue of the
hyperelasto-plastic localization tensor.

Finally, based on a general representation for isotropic materials, examples were given
for the case of associated von Mises flow rule. To this end, the critical localization direction
and the critical hardening modulus at the onset oflocalization were investigated with respect
to the amount of previous elastic straining or rather the actual stress state and compared
to the analytical results of a small elastic strain solution. It is intriguing, that the deter
mination of the critical localization direction and the critical hardening modulus is entirely
unaffected by the amount of plastic straining. Moreover, the analysis ofuniaxial extension,
pure and simple shear revealed that, at finite elastic strains, even a rather large positive
H,,; Her allows for the onset of localization. Thereby, the corresponding spatial orientation
may considerably depart from the small elastic strain solution.

In conclusion, it is believed that this work clarified issues pertaining to the formulation
and analysis of strong discontinuities in the framework of hyperelasto-plastic materials at
large strains and forms an indispensable prerequisite to future numerical developments.
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